Thermal Modeling and Analysis of Three- Dimensional (3d) Chip Stacks
نویسندگان
چکیده
Title of Thesis: Thermal Modeling and Analysis of Three-Dimensional (3D) Chip Stacks Christopher Bachmann, Master of Science, 2007-09-11 Thesis Directed by: Avram Bar-Cohen and Jungho Kim Mechanical Engineering Department Three-dimensional (3D) chip architectures have garnered much research interest because of their potential to alleviate the interconnect delay bottleneck that is expected to limit the traditional progression of Moore’s law through device scaling in planar chips. While the benefits of 3D chip integration are clear, there are several obstacles to its broader implementation. In particular, the issue of power dissipation is a major challenge to the development of high performance 3D chip stacks. The well-documented difficulties in cooling future 2D chips will only be exacerbated by 3D architectures in which volumetric power density is increased and non-uniform power dissipation is more severe. This thesis focuses on three relevant topics in the cooling of 3D chip stacks: 1) the determination of effective thermal properties for use in compact thermal models, 2) single phase internal liquid cooling, and 3) hot spot remediation with anisotropic thermal interface materials. THERMAL MODELING AND ANALYSIS OF THREEDIMENSIONAL (3D) CHIP STACKS
منابع مشابه
Thermal Characterization of a Three-Dimensional (3D) Chip Stack
In order to determine appropriate cooling solutions for 3D chip stacks in various cases, it is important to have a better understanding of the total thermal resistance of a 3D chip stack. For this purpose, precise thermal resistance measurements and modeling of each component of a 3D chip stack are important. The thermal resistance of interconnection is considered to be one of the thermal resis...
متن کاملInterfacial delamination and fatigue life estimation of 3D solder bumps in flip-chip packages
Detailed three-dimensional finite element analysis was carried out for area-array solder-bumped flip-chip packages. The analysis enabled determinations of accurate three-dimensional effects on stress distributions as well as local fracture behaviors under thermal load. The 3D analysis also estimated thermal fatigue life of solder bumps. Since dimensions of various components span more than thre...
متن کاملThree-Dimensional Finite Element Analysis of Stress Intensity Factors in a Spherical Pressure Vessel with Functionally Graded Coating
This research pertains to the three-dimensional (3D) finite element analysis (FEA) of the stress intensity factors (SIFs) along the crack front in a spherical pressure vessel coated with functionally graded material (FGM). The vessel is subjected to internal pressure and thermal gradient. The exponential function is adopted for property of FGMs. SIFs are obtained for a wide variety of crack sha...
متن کاملExploration of Temperature-Aware Placement Approaches in 2D and 3D Stacked Systems
Technology scaling has brought about dramatic rises in the on-chip power density of modern microprocessors. This has led to greater scrutiny and awareness of thermal management techniques which allows to uphold the thermal integrity of the chip. Higher temperatures or uneven distribution of temperatures result in timing uncertainties which induces performance and reliability concerns for the sy...
متن کاملStress Analysis of Skew Nanocomposite Plates Based on 3D Elasticity Theory Using Differential Quadrature Method
In this paper, a three dimensional analysis of arbitrary straight-sided quadrilateral nanocomposite plates are investigated. The governing equations are based on three-dimensional elasticity theory which can be used for both thin and thick nanocomposite plates. Although the equations can support all the arbitrary straight-sided quadrilateral plates but as a special case, the numerical results f...
متن کامل